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LE'lTER TO THE EDITOR 

Evidence for non-universal exponents in bootstrap percolation 
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HLRZ c/o KFA, 5170 Julich 1, Federal Republic of Germany 

Received 30 August 1990 

Abstract. Bootstrap percolation ( BP) models are systems where sites are initially randomly 
occupied. Those sites that do not maintain a suitable local environment of at least m 
occupied sites are successively removed. There has been considerable discussion regarding 
the nature of the phase transitions in these systems. For sufficiently large m values first-order 
transitions occur. These have been the focus of intensive activity in the last few years; 
however, a consensus concerning their nature has now been achieved for many cases. 
Current open questions concerning these systems now focus on the universality of critical 
exponents for the lower m values. Our simulations indicate that for m = 3 on the simple 
cubic lattice, the exponent /3 which characterizes the critical behaviour of the percolation 
probability, is distinct from that of usual random percolation ( m  = 0). We quote p c =  
0.5717 f 0.OOOS and /3 = 0.6 f 0.1 for m = 3. We argue that the connectivity exponent U for 
m = 2 should be the same as that of usual random percolation and within the limits of our 
numerical accuracy we observe that this appears to be the case for m = 3 on the simple 
cubic lattice. The implications of this surprising dichotomy are considered. 

In bootstrap percolation (BP) [ 1-51 sites are initially occupied randomly (with probabil- 
ity p) and then all sites that do not have at least m neighbours are permanently removed. 
This culling continues until no more sites can be removed. In BP models p c  is defined 
to be the concentration below which no infinite cluster is found in the infinite system 
in the infinite time limit, and in all cases p c  is greater than or equal to the threshold 
for usual random percolation on the same lattice. BP with m = O  is usual percolation. 
For m = 1 BP, isolated sites, and for m = 2 BP, dangling ends of percolation clusters, 
are removed. In both cases we expect that the percolation threshold, p c ,  remains 
unchanged on all lattices. For m = 1 critical exponents should be unchanged. For m > 2 
the threshold is above that of usual random percolation and the nature of the transition 
is strongly lattice dependent. Now that exact solutions [6] and numerical evidence [7] 
are largely in agreement concerning the description of the first-order transitions that 
occur for sufficiently large m values, the universality [2,7] or otherwise of the exponents 
of the intermediate m values remains the outstanding unsolved aspect of these systems: 
are they all percolation-like? The nature of the critical exponents for m = 2 and m = 3, 
and the threshold for m = 3 on the simple cubic lattice are questions that we address 
in this letter. We shall show below that our answers also shed some light on questions 
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of universality in related systems such as rigidity percolation [8-101 and the zero- 
temperature behaviour of the dilute three-state antiferromagnetic Potts model on the 
triangular lattice [ 111 (3-PAFT). 

BP models have recently been reviewed [5], and a full tabulation of numerical 
results of BP systems with second-order transitions is given in table I1 of [5]. Two 
analytic arguments concerning critical exponents of m = 2 BP models can be made, 
one concerning distinctive values of p, the critical exponent of the percolation probabil- 
ity, P( p) - ( p  -pJB,  the second for identical values of v, the exponent of the correlation 
length. The first argument comes from the original BP studies, where Chalupa er al 
showed [ 11 that on the Bethe lattice, P( p)  has an exact solution that gives p = 1 for 
m = 1 (identical to the random percolation value, denoted by Po below), but pZ = 2 for 
m = 2. The applicability of this result for finite lattices may be limited, because, as 
pointed out by van Enter (private communication), it is not surprising that the values 
are distinct on the Bethe lattice since for m = 2, the infinite cluster is identical to the 
backbone of the percolation infinite cluster as there are no loops. For finite lattices, 
however, the backbone is distinct from m = 2 clusters, as there are dangling structures; 
for example on the square lattice a square attached by a linear chain of sites to the 
backbone does not carry current but is stable to culling under the m = 2 rules. However, 
even in finite lattices the backbone provides the key to the problem as it is well known 
[12] that the backbone has distinctive p = p b b  values, but identical v values to usual 
random percolation. Based on this, we argue that for m = 2, v should be identical to 
that of random percolation on all lattices, because random percolation, backbone 
percolation and m = 2 BP all have the same threshold, and thinking in terms of 
measurement techniques for v (discussed below) in any simulation, identical numerical 
estimates will be found. Applying similar thoughts to we see that since m = 2 BP has 
a cluster with P ( p )  larger than that of the backbone and smaller than that of the 
random model, we expect that pod P2 s P b b .  

In the first BP simulation, Kogut and Leath [2] found distinctive central p values 
in finite dimensions, on some small samples. Their error bars were Cjustifiably) large, 
but it is reasonable to conclude that their p estimates for m = 3 on both triangular 
(linear size L = 200) and simple cubic (L  = 35) lattices are distinct from those of usual 
percolation. RG studies [ 131 of both v and p support the idea of different universality 
classes. A serious attempt to address the universality question, was made [ 141 by Khan 
et al, via a Monte Carlo renonnalization group (MCRG) study of cell sizes of up to 
L = 400 on the triangular lattice. They interpret their results to mean that both m = 2 
and m = 3 BP on this lattice are in the same universality class as usual percolation. We 
feel that this conclusion is justified as regards their v estimates, however, their measure- 
ments of the magnetic scaling power Yh,  from which a p estimate may be drawn via 
the relation p = v(2 -yh) depend on the choice of threshold, and for m = 3 a quite 
justifiable choice of threshold leads to a p estimate somewhat above that of usual 
percolation. A resolution of this question from their data is probably dependent on 
an independent evaluation of p c  for the m = 3 case on the triangular lattice. 

Our new calculations were motivated by a desire to settle the universality question, 
and by an intuition that because of the analytic arguments and precedents presented 
above, there could possibly be differing results for universality of U and of p values. 
We felt that independent evaluations with larger lattices of p and v, (apparently not 
possible with the analysis methods of [ 131 and [ 141) were needed to clarify this point. 
We chose the simple cubic lattice because the discrepancy between p estimates of [23 
for m = 0, 2 and 3 is much larger there than for the triangular case and because Ray 
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and Sahimi were carrying out conductivity studies for m = 3 on this lattice and required 
an accurate threshold estimate. 

We have studied systems of size L3, with 1 0 4  L S  110, for usual percolation, and 
m = 2' and 3 BP at a wide range of concentrations, with 10 000 samples for each case 
for the smallest samples and several hundred for the larger ones. Helical and periodic 
boundary conditions were used during the culling process and free boundary conditions 
during the connectivity checks. An HP 9000/855 was used for the largest samples and 
longest runs and SUN sparc stations and an Intel 860 chip for the smaller samples. 
For each choice of m and of ( L , p )  we calculated both R ( L , p ) ,  the probability of 
existence of a spanning cluster, and P ( p ) ,  the probability that a site belongs to the 
largest cluster. 

We have determined thresholds and v values by a study of the R ( p ) .  Defining the 
concentration p ;  to be that concentration at which x% of samples percolate, we 
measured p f  as well as two measurements of the width, W ( L )  of R ( p ) ,  namely 
W ( L )  = p g " - p ~ ,  and W ( L )  = p ~ , - p ~ , .  We make the assumptions [15] that both W ( L )  
and p c - p t o  scale as L-I"'. These enable us to obtain pc from a plot of pk, as a function 
of W( L), without an explicit evaluation of v, and to obtain v from a plot of log,, W (  L) 
as a function of log,, L, independent of threshold choice. 

For m = 0 , l  and 2 these methods give identical results since R (  p) is the same for 
all three cases. Our finite samples extrapolate nicely to the infinite system value of 
p c  = 0.31 16 from [ 161. The results from the R( p) measurements for m = 3 are given in 
figures 1 and 2. From figure 1 we deduce that p c  = 0.5717 f 0.0005. This is somewhat 
above the value of 0.568 from [2], the latter value being entirely in line with an 
extrapolation from smaller samples on our graph. There is a strong curvature in this 
graph, caused by strong corrections to scaling. In figure 2 we observe that the slope 
of the W (  L) measurements gives v = 0.876* 0.010, which is quite consistent with the 
usual v value of random percolation, v=0.872*0.070 from series [17] or v =  
0.875 f 0.008 from simulation [ 181. 

We have evaluated p, independently from either v or p c ,  from a plot of log,, P( p) 
as a function of log,,(p - p c ) .  The threshold of the finite system used for this evaluation 
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Figure 1. Graphs of p i o  as a function of W ( L )  for m = 3 BP on the simple cubic lattice. 
The points indicated by 0 are measurements of W( L) = pko -pko and those indicated by 
x are measurements of W(L) = p h - p f o .  
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Figure 2. Graphs of log,, W ( L )  as a function of log,, L for m = 3 BP on the simple cubic 
lattice. The points indicated by 0 are measurements of W ( L )  = pk, - p k ,  and those indicated 
by x are measurements of W (  L )  = p;, - p f , .  

is selected to be that which gives the straightest line in this plot. Although this is an 
obvious way to directly estimate /3 from a percolation simulation, it is not usually 
practiced in large simulations, where cluster statistics are not always retained. Therefore 
we first tested the method with evaluations of P for usual percolation and were 
pleasantly surprised to find that on a system with L = 100 we achieved the straightest 
line with a slope ~,=0.395*0.010 at a threshold of 0.313. This slope is in excellent 
agreement with recent evaluations of Po = 0.405 f 0.025 for series results [ 171 and 
Po = 0.412 f 0.010 from simulations [ 181. For smaller samples we found excellent 
collapse of data at suitable thresholds and similar exponent values. 

We present plots of log,, P( p )  as a function of log,,( p - p c )  for L = 80 systems in 
figures 3 and 4. In figure 3, the upper line indicates the m = 0 data and the lower the 

I I I I I I I I  c 
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Figure 3. Graphs of log,, P( p )  as a function of log,,( p - p c )  for m = 0 (indicated by 0 )  
and m = 2  (indicated by x )  BP on the simple cubic lattice; p,=O.313. 
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Figure 4. Graphs of log,, P (  p )  as a function of log,,( p - p J  for m = 3 BP on the simple 
cubic lattice; pc  = 0.5724. The full line indicates the slope of Po.  

m = 2. For the highest p values the m = 0 data falls on top of the m = 2 data. The 
arrows on both curves indicate the point where the m = 0 data begins to scale with 
L = 100 (m = 0) and L = 110 ( m  = 2); points to the left suffer from finite-size distortion. 
Both plots are drawn at the size-dependent pc=0.313, the results to the right of the 
arrow are not extremely sensitive to the exact p c  choice. Note that the m = 0 data 
follows a single straight line from -2.4 < loglo( p - p c )  < -0.8, whereas the m = 2 data 
follow this line from -2.4 to -1.6 and then crossover to a higher slope. This higher 
slope has a value of about 0.65, which is quite consistent with the &=0.64 estimate 
of Kogut and Leath [2]. The two distinct regions of slope of about 0.4 and slope of 
about 0.65 occur for a wide range of sample sizes and p c  values; comparisons between 
different sized samples suggest that the region of m = 2 data which has the same slope 
as the m = 0 is not a finite-size effect, but reflects the true critical behaviour of the 
system. Apparently the critical region is very small and there is a rapid crossover to 
the region of larger slope. We conclude that p2 = Po,  is consistent with our data. 

A very cursory glance at figure 4 ( p c  = 0.5724) for m = 3 shows that here the shape 
of the curve is quite distinct from those of m = 0 and 2. We were unable to select any 
threshold choice where the s-curvature disappeared, although the slope of the line 
below log,,( p - p c )  = -2.2 did depend on exact threshold choice. Here again very nice 
scaling of different sized samples is seen for loglo( p - p c )  > -2.4 for samples of different 
sizes. There appears to be a crossover between a slope of 0.60*0.03 and a slope of 
0.77 f 0.10 at about log,,( p = p c )  = -1.6. Again the higher slope is consistent with the 
estimate of Kogut and Leath [2] of 0.82. For ease of comparison, the slope of p; is 
indicated by the full line in figure 4; both data slopes are clearly higher. Above 
log,,( p - p c )  = -0.8 a third slope is seen, indicating a rich behaviour of corrections to 
scaling. We do note that some region with the slope of 0.6 f 0.03 is seen in samples as 
small as L = 35; it is seen very clearly in the L = 110 data. (For L = 80 and p c  of the 
infinite sample limit (rather than the finite-size p c  of the plotted data), we see that the 
first slope is rather higher than for thresholds closer to p!:, but there is then a small 
region of lower slope before the crossover into the higher slope further from the critical 
region.) We conclude that p3 = 0.6 f 0.1 for m = 3 BP. 
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Caution in drawing any conclusion based purely on the fairly small samples of 
most studies made to date (our own included) is advisable. The simulation analyses 
explicitly assume, and the renormalization group ( RG) calculations implicitly require, 
the usual kind of second-order finite-size scaling. We have no proof that this is correct, 
and it appears that corrections to scaling play a larger role here, than they do for the 
usual percolation cases. Another reason to take evidence of differing exponents with 
caution, can be motivated from the related rigidity percolation [8] problems, where 
initial studies suggested distinct exponents from those of random percolation whereas 
later calculations with larger samples [9] indicated otherwise. Taking into account 
these warnings, our overall conclusions are that v is independent of m, and that 
Po = = pz,  but that p3 is distinct. We find that p c  = 0.5717 * 0.0005 for m = 3 BP. It 
would be interesting to understand the nature of the crossovers in the m = 2 and m = 3 
models. Ray and Sahimi have recently found that our new m = 3 threshold gives a 
conductivity exponent that is the same as random percolation. This suggests that m = 3 
BP is of a similar type to backbone percolation, with j3 being the only exponent that 
is distinct from usual percolation. We conjecture that rigidity percolation may also 
resemble backbone percolation in this regard, as there too it is the p values that are 
so different from the usual case. In contrast, current numerical results [ l l ]  give both 
p and Y of random percolation for percolation of the zero temperature dilute ~-PAFT.  

If the latter result holds up for larger samples then distinctiveness of p values may be 
an important qualitative difference between rigidity percolation and the zero tem- 
perature dilute ~-PAFT,  and a useful way to classify different types of generalized 
percolation models. 

We thank A Aharony and A C D van Enter for discussions on the universality questions 
that we have tried to resolve here. We thank T Ray for forwarding details of his 
calculations with M Sahimi prior to submission. This work was supported in part by 
grants from The Israel Academy of Sciences and Humanities, the US-Israel Binational 
Research Foundation, the Technion VPR Research Fund, the New York Metropolitan 
Research Fund and the Venezuela Technion Society Fund (JA). 
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